Inhibition of Lithium-Sensitive Phosphatase BPNT-1 Causes Selective Neuronal Dysfunction in C. elegans
نویسندگان
چکیده
Lithium has been a mainstay for the treatment of bipolar disorder, yet the molecular mechanisms underlying its action remain enigmatic. Bisphosphate 3'-nucleotidase (BPNT-1) is a lithium-sensitive phosphatase that catalyzes the breakdown of cytosolic 3'-phosphoadenosine 5'-phosphate (PAP), a byproduct of sulfation reactions utilizing the universal sulfate group donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) [1-3]. Loss of BPNT-1 leads to the toxic accumulation of PAP in yeast and non-neuronal cell types in mice [4, 5]. Intriguingly, BPNT-1 is expressed throughout the mammalian brain [4], and it has been hypothesized that inhibition of BPNT-1 could contribute to the effects of lithium on behavior [5]. Here, we show that loss of BPNT-1 in Caenorhabditis elegans results in the selective dysfunction of two neurons, the bilaterally symmetric pair of ASJ chemosensory neurons. As a result, BPNT-1 mutants are defective in behaviors dependent on the ASJ neurons, such as dauer exit and pathogen avoidance. Acute treatment with lithium also causes dysfunction of the ASJ neurons, and we show that this effect is reversible and mediated specifically through inhibition of BPNT-1. Finally, we show that the selective effect of lithium on the nervous system is due in part to the limited expression of the cytosolic sulfotransferase SSU-1 in the ASJ neuron pair. Our data suggest that lithium, through inhibition of BPNT-1 in the nervous system, can cause selective toxicity to specific neurons, resulting in corresponding effects on behavior of C. elegans.
منابع مشابه
Protective Role of Apigenin Against Aβ 25-35 Toxicity Via Inhibition of Mitochondrial Cytochrome c Release
Introduction: Cognitive dysfunction is the most common problem of patients with Alzheimer disease (AD). The pathological mechanism of cognitive impairment in AD may contribute to neuronal loss, synaptic dysfunction, and alteration in neurotransmitters receptors. Mitochondrial synapses dysfunction due to the accumulation of amyloid beta (Aβ) is one of the earliest pathological features of AD. Th...
متن کاملSynaptic Polarity Depends on Phosphatidylinositol Signaling Regulated by myo-Inositol Monophosphatase in Caenorhabditis elegans
Although neurons are highly polarized, how neuronal polarity is generated remains poorly understood. An evolutionarily conserved inositol-producing enzyme myo-inositol monophosphatase (IMPase) is essential for polarized localization of synaptic molecules in Caenorhabditis elegans and can be inhibited by lithium, a drug for bipolar disorder. The synaptic defect of IMPase mutants causes defects i...
متن کاملMethylene Blue Protects against TDP-43 and FUS Neuronal Toxicity in C. elegans and D. rerio
The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that refl...
متن کاملDecreased microRNA levels lead to deleterious increases in neuronal M2 muscarinic receptors in Spinal Muscular Atrophy models
Spinal Muscular Atrophy (SMA) is caused by diminished Survival of Motor Neuron (SMN) protein, leading to neuromuscular junction (NMJ) dysfunction and spinal motor neuron (MN) loss. Here, we report that reduced SMN function impacts the action of a pertinent microRNA and its mRNA target in MNs. Loss of the C. elegans SMN ortholog, SMN-1, causes NMJ defects. We found that increased levels of the C...
متن کاملDephosphorylation of 1D-myo-inositol 1,4-bisphosphate in rat liver.
Dephosphorylation of 1D-myo-inositol 1,4-bisphosphate [Ins(1,4)P2] in rat liver is catalysed by a cytosolic phosphatase that removes the 1-phosphate group. The Km for Ins(1,4)P2 is approx. 17 microM. Li+ (100 mM) causes 50% inhibition of Ins(1,4)P2 phosphatase activity when activity is measured at the very low substrate concentration of 10 nM, but on raising the substrate concentration to 100 m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 26 شماره
صفحات -
تاریخ انتشار 2016